

# Abstracts

## Compact single-chip W-band FMCW radar modules for commercial high-resolution sensor applications

*A. Tessmann, S. Kudszus, T. Feltgen, M. Riessle, C. Sklarczyk and W.H. Haydl. "Compact single-chip W-band FMCW radar modules for commercial high-resolution sensor applications." 2002 Transactions on Microwave Theory and Techniques 50.12 (Dec. 2002 [T-MTT] (Special Issue on 2002 International Microwave Symposium)): 2995-3001.*

Two compact single-chip 94-GHz frequency-modulated continuous-wave (FMCW) radar modules have been developed for high-resolution sensing under adverse conditions and environments. The first module contains a monolithic microwave integrated circuit (MMIC) consisting of a mechanically and electrically tunable voltage-controlled oscillator (VCO) with a buffer amplifier, 10-dB coupler, medium-power and a low-noise amplifier, balanced rat-race high electron-mobility transistor (HEMT) diode mixer, and a driver amplifier to increase the local-oscillator signal level. The overall chip-size of the FMCW radar MMIC is  $2/\text{spl times}/3.5 \text{ mm}^2$ . For use with a single transmit-receive antenna, a 94-GHz microstrip hexaferrite circulator was implemented in the module. The radar sensor achieved a tuning range of 1 GHz, an output signal power of 1.5 mW, and a conversion loss of 2 dB. The second FMCW radar sensor uses an MMIC consisting of a varactor-tuned VCO with injection port, very compact transmit and receive amplifiers, and a single-ended resistive mixer. To enable single-antenna operation, the external circulator was replaced by a combination of a Wilkinson divider and a Lange coupler integrated on the MMIC. The circuit features coplanar technology and cascode HEMTs for compact size and low cost. These techniques result in a particularly small overall chip-size of only  $2/\text{spl times}/3 \text{ mm}^2$ . The packaged 94-GHz FMCW radar module achieved a tuning range of 6 GHz, an output signal power of 1.5 mW, and a conversion loss of 5 dB. The RF performance of the radar module was successfully verified by real-time monitoring the time flow of a gas-assisted injection molding process.

[Return to main document.](#)

Click on title for a complete paper.